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Abstract
We examine various aspects of dynamic wetting with viscous Newtonian and non-Newtonian
fluids. Rather than concentrating on the mechanisms that relieve the classic contact line stress
singularity, we focus on the behavior in the wedge flow near the contact line which has the
dominant influence on wetting with these fluids. Our experiments show that a Newtonian
polymer melt composed of highly flexible molecules exhibits dynamic wetting behavior
described very well by hydrodynamic models that capture the critical properties of the
Newtonian wedge flow near the contact line. We find that shear thinning has a strong impact on
dynamic wetting, by reducing the drag of the solid on the fluid near the contact line, while the
elasticity of a Boger fluid has a weaker impact on dynamic wetting. Finally, we find that other
polymeric fluids, nominally Newtonian in rheometric measurements, exhibit deviations from
Newtonian dynamic wetting behavior.

Introduction

Dynamic wetting is ubiquitous in nature and technology, yet
many questions about the origins of the variation of dynamic
wetting with contact line speed remain open. Some of these
questions arise from the unknown nature of the hydrodynamics
in a microscopic region at the contact line. However, the
dynamic wetting of viscous fluids is not highly sensitive to
those hydrodynamics. Rather, dynamic wetting of viscous
fluids depends mostly on the fluid flow slightly farther from
the contact line where the physics governing the flow is known
and is dominated by the fact that the flow is confined to
a wedge-like region whose shape is largely independent of
the macroscopic geometry. This region forms an effective
boundary condition for the free surface in the macroscopic
regions where, for the speeds that can be attained in wetting,
viscous forces are negligible and the interface is essentially
static-like. Added richness of dynamic wetting of viscous
fluids, such as polymer melts and solutions, arises because
deformation rates imposed on the fluid may induce non-
Newtonian behavior within the wedge-like region controlling
the wetting.

Our goal in this paper is to explore how and to what extent
such non-Newtonian behavior near the contact line impacts
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dynamic wetting. We will mainly focus on fluid advancing
across a non-deformable solid surface with an inviscid vapor
phase above. First, we will review some of the general
characteristics of the flow field in the wedge-like region. After
describing the particular experimental method we use to probe
dynamic wetting, we will show an analytic model for dynamic
wetting that very successfully describes dynamic wetting of
a specific suite of Newtonian fluids. We then examine the
dynamic wetting of two fluids chosen because they exhibit
two different types of non-Newtonian behavior in a well
controlled fashion. Finally, we see that the dynamic wetting
of polymer melts and solutions which appear Newtonian in
rheometric measurements—perhaps even most polymer melts
and solutions—show deviations from Newtonian behavior.

1. Nature of flow near a moving contact line

Mass conservation requires that in the geometry of the wedge-
like region near a moving contact line, the deformation
rates in the fluid rise as U/r , where r is the distance
from the contact line and U is the speed of the contact
line relative to the solid surface. (See figure 1.) For a
Newtonian fluid, the stresses also rise as ηU/r , where η is
the viscosity of the liquid. Dussan and Davis provide a very
general description of how this flow causes a multi-valued
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Figure 1. Schematic of wedge-like flow field with coordinate system
(left) and regions (right).

velocity field at the contact line and how a resulting non-
integrable stress singularity arises in a Newtonian fluid that
does not slip on the solid surface, unless some new mechanism
intervenes [1]. Many mechanisms that could remove this
unphysical stress singularity have been suggested by analysis
and simulation, including slip at the solid/liquid interface (see
for example [2, 3]), thin films moving ahead of the contact line
(see for example [4]), disjoining pressure [5], spatially varying
surface tensions [6, 7], or the molecular kinetics model [8],
but none have been directly observed experimentally. If a
fluid shear thins to zero viscosity, the singularity would be
alleviated [9]. While non-Newtonian behavior arising from
memory in the fluid cannot alone relieve the multi-valued
velocity field, there is no general proof that some constitutive
relation containing fluid memory cannot alleviate the stress
singularity [3]. As we shall see, the qualitative nature of the
wedge flow just outside the ‘inner’ region where the stress
singularity is relieved is not dependent on the detailed nature
of these ‘inner’ physics. We have noted schematically the
presence of the inner region in figure 1.

Outside of this inner region, but still in a region where
viscous forces on the free surface compete with capillary forces
to determine the interface shape, the fluid flow is dominated
by the geometrical confinement of the fluid into a wedge-like
region. Flow in the wedge has one dominant shear deformation
rate proportional to U/r with a dependence on azimuthal
position in the fluid. Other deformation rates, both shear and
elongation, are smaller by a factor Ca (=ηU/σ , capillary
number, where σ is the surface tension at the free surface). The
elongational deformation rates may become dominant near a
stagnation point such as occurs at the entrance to a pre-existing
film or at the contact line if slip is the physics operating in the
inner region. Due to the rising dominant deformation rate in
the flow field, the free surface shows viscous bending which,
like the deformation rates, grows as 1/r .

To make our picture of this wedge-like region more
concrete, we refer to a specific description of the flow. We will
emphasize the generality of this description. Details of this
model may be found in [10] and [11]. For a Newtonian fluid to
O(Ca) and with Re = 0 (=ρU�/σ , Reynolds number, where
� is a characteristic length scale and ρ is the fluid density), the
steady state interface shape in the wedge-like region is given
by:

θ = g−1
(

d0 + Ca
{

ln
r

a
+ d1

})
, (1)

where g(x) ≡ ∫ x
0 (y − sin y cos y)/2 sin y dy, a is the length

scale associated with the macroscopic scale of the problem,
and d0 and d1 are constants of integration that can be related
to parameters of the inner and outer regions by asymptotic
matching. This solution represents the order Ca correction to a
static interface arising from viscous bending in the modulated
wedge near the contact line. For small arguments g(x) ∼ x1/3

and if d0 = 0, the variation of free surface slope is θ ∼
Ca1/3, a general property of wedge flow which is also found
in lubrication analyses (see for example [12]).

To complete the problem, this solution is asymptotically
matched to regions on either side of the modulated wedge: to
an outer region, with length scale a, where the viscous bending
of the interface has become negligible and the interface shape
is static-like, and to a region at smaller r which has a length
scale �1. The only requirement on this region at smaller r is
that it asymptotically behave as Ca ln r as r/�1 → ∞ and
that �1 � a. (See figure 1.) This region need not be the
region where the stress singularity is alleviated. The composite
solution for the interface shape valid in the wedge and its
overlap with the outer macroscopic region is [11]:

θ = g−1
(

g(ω0) + Ca ln
r

a

)
+ f

(
r

a
; ω0,

a

RT

)
− ω0. (2)

On the right-hand side of this equation, the f -function term
represents a static-like outer shape, existing far from the
contact line where viscous forces are negligible and described
by the Laplace equation. ω0 is the extrapolation of the static
shape, f , back to the solid surface. It is not necessarily an angle
on the interface but is a precisely defined quantity which can
be determined independent of the magnification of any optical
system used to measure it.

The interface shape described in equation (2) can only
describe the interface in a region where the details of the
smaller scale physics have died away and only its asymptotic
form, Ca ln r , is significant. This delay of the modulated
wedge region (described by equation (1)) until the physics
on a smaller scale has relaxed to have the proper Ca ln r
form has been seen for a meniscus advancing over a pre-
existing fluid film. Analyses identify parameter ranges where a
significant region of r exists in which the flow moving onto
the pre-existing thin film causes significant viscous bending
not described by the modulated wedge solution, but at larger r
(before viscous bending becomes insignificant) the modulated
wedge behavior is recovered [13, 14]. We have observed this
behavior experimentally as reported in [14] and in section 3 of
this paper.

The theory relates the variation of the dynamic contact
angle, ω0, with Ca to parameters describing the physics on the
smaller length scale; and it forces the functional form of the
viscous bending described by the modulated wedge solution to
control the variation of ω0

g(ω0) = g(θs + A(U)) + Ca ln(a/�1(U)), (3)

where θs is the static contact angle when U = 0 and A(U)

is some unknown function of the physics on the smaller scale.
The solution also allows the length scale of the smaller scale
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Figure 2. Typical shadows of images. (a) Low Ca with ω0 < 90◦; (b) high Ca with ω0 > 90◦.

physics, �1(U), to vary with contact line speed. If we assume
that A(U) and the speed dependence of �1 have negligible
impact and that we remain at small enough arguments of the
g(ω0) that only the first term in its expansion are needed, then

ω3
0

9
− θ3

s

9
= Ca ln

a

�1
. (4)

Here we see explicitly that the modulated wedge flow gives
rise to this specific dependence of the dynamic contact angle
on Ca. When θs = 0, equation (4) also arises naturally
in lubrication analyses of moving contact lines which are
restricted by definition to small interface slopes.

The 1/r dependence of the shear deformation rates as
we move to smaller r through the wedge flow region and
toward the true inner region suggests that there could be
regions where relaxation modes caused by segmental and
chain motions of polymeric and even oligomeric fluids will
be unable to relax, leading to non-Newtonian behavior in
the fluid. Such a region of non-Newtonian behavior will
be present if the rising deformation rates anywhere in the
flow field cross the inverse of the longest relaxation time in
the fluid. Since non-Newtonian behavior need not alleviate
the stress singularity, such a non-Newtonian region could
intervene between the inner region that resolves the singularity
and the region where the modulated wedge flow described
by equation (1) dominates. We have indicated the possible
presence of such a region in figure 1.

2. Experimental tools

Our goal is to experimentally probe the hydrodynamics
that control dynamic wetting. Thus, we want to make
measurements at the smallest possible scale with accuracy and
precision that allows us to measure the free surface shapes and
flow fields predicted by models under well defined contact line
motions. Further, we want to expose the wedge flows as much
as possible, so we chose geometries that minimize the effect
of outer flows (e.g., stagnation points in the center of slots),
allowing the wedge flow to manifest itself over larger distances
from the contact line.

To achieve these goals, we measure the shape of a
meniscus rising on the outside of a vertical cylinder moving

into a fluid bath at controlled speeds. Details of all of methods
for measuring free surface shapes may be found in [14–18]
while the additional methods needed to measure the flow fields
are given in [19, 20]. We form a shadow of the meniscus
and image it using telemicroscopy and digital image analysis.
Typical images of these menisci are shown in figure 2 for
examples of menisci with ω0 < 90◦ for smaller Ca (where
the meniscus forms above the bulk fluid level) and menisci at
larger Ca where the large viscous deformations in the wedge
flow region have driven ω0 > 90◦ (and the meniscus forms
below the bulk fluid level). Koehler illumination allows us
to examine interfaces as close to the contact line as possible,
usually within 15–20 μm for interfaces forming angles greater
than about 20◦ with the solid surface and smaller distances as
that angle decreases. By viewing from the side, we are able
to measure interfaces that approach the solid at angles above
or below 90◦. The use of a cylinder provides a clear plane
of focus for the telemicroscope. We use a larger diameter
cylinder (RT ≈ 10a where a is the capillary length of the
fluid,

√
σ/(ρG)) and correct all predicted interfaces for the

surface being cylindrical rather than flat. We directly extract
the interface angle as a function of position along the interface
from the gray levels in the image to eliminate the noise we
find if we extract the interface position and differentiate to get
the interface angle. To ensure the accuracy and precision of
the methods, before any dynamic interfaces are measured, the
system is calibrated until it can reproduce the known shape
of an axisymmetric static meniscus rising on the outside of a
cylinder [21].

Our experimental geometry enhances our ability to cleanly
probe the wedge-like flows and our control of immersion
speeds allows us to probe both steady state and transient
motion of the contact line under constant outer length scale
conditions. Since our fluid baths have dimensions on the order
of ∼100a, the length scale of all flows arising in the outer
regions has been moved as far away from the wedge region as
possible under terrestrial condition. By immersing the cylinder
at fixed speeds, we control contact line speeds and impose any
speed we choose in the contact line, unlike in spontaneous
spreading of drops. We can also make step changes in the
cylinder velocity and examine the transients in the contact line
velocity as it moves to a new steady state.
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Table 1. ‘Newtonian’ PDMS melt properties.

Fluids
θs@Pyrex
(deg, ±5◦)

η@25 ◦C
(P, ±5%)

σ

(dyn cm−1)
Mw [52]
(g mol−1)

Degree of
polymerization

1P 0 1 19.9 ± 0.4 5 970 81
10P 0 10 20.6 ± 0.5 28 000 378
50P 0 47 20.6 ± 0.8 49 350 667
300P 0 282 20.7 ± 0.9 91 700 1239

Figure 3. Typical PDMS interfaces for Ca < 0.01. (◦) Ca = 0.001,
(
) Ca = 0.003, (��) Ca = 0.005. Solid line fits to equation (2).

3. A viscous Newtonian fluid

We first examine the dynamic wetting of lower molecular
weight polydimethylsiloxane (PDMS) melts which are
considered Newtonian fluids. Table 1 describes the properties
of the fluids tested. Their steady state interface shapes and flow
fields are very well described by the model in equation (2) for
Ca � 0.1 [16, 19, 22]. As shown in figure 3, we see that the
viscous bending of the interface is very well described by the
modulated wedge flow down to the smallest r resolved by our
optics (∼20 μm).

In figure 4(a), we show that the dynamic contact angle
for these materials follows the approximate relationship in
equation (4) for a fluid with zero static contact angle and
for low enough Ca that the approximation g(ω0) ≈ ω3

0/9
is valid. By changing the chemistry of the solid surface, we
change the static contact angle and still observe this same
behavior [23]. From these results, we see the connection
between the modulated wedge flow dominating over large
regions of the interface near the contact line and the Ca1/3

power law behavior of the dynamic contact angle. A more
detailed analysis of the ω0 versus Ca data from these fluids
allows us to extract some information about the physics
at the smaller scales. We find that the velocity-dependent
functions A(U) and �1(U) must make small contributions to
the variation of ω0. These variations are material-specific
and the U -dependence does not scale with Ca [24]. The ω0

variation also does not follow models proposed for a short
precursing film continuously moving ahead of the contact
line [17, 25]. Figure 4(b) shows the variation of the dynamic
contact angle to the highest Ca possible in dynamic wetting
when air is entrained onto the solid surface. Angles in this

Figure 4. (a) Variations of ω3
0 versus Ca for (��) 10P PDMS, (�)

0.15 wt% XG solution, (�) PIB Boger fluid, and (◦) PIB base fluid
at low Ca. (b) Variation of ω0 versus Ca over entire Ca range for
(��) 600P PDMS, (◦) PIB base fluid, and (�) PIB Boger fluid. Note
that the non-zero static contact angle causes the lower slope of the
data for the PIB fluids compared to the PDMS.

regime are too large to use the approximation g(ω0) ≈ ω3
0/9,

so one must use the full g(ω0) given below equation (1) to
describe these data. The turn over in the data at high Ca is
largely due to the form of the g-function, with possibly small
contributions from the functions A(U) and �1(U).

Responses to transients forced on the speed of the solid
surface exhibit quasi-steady behavior described by this steady
state model. After a brief entrance time on the order of 1 s, the
interface shapes are described by equation (2) with Ca set to
its instantaneous value. At this point, the flow has entered a
quasi-steady regime. In figure 5, we show the relaxation of a
meniscus after a rapid step change (∼1/30 s) in surface speed.
The timescale of the full relaxation to steady state at the new
Ca is governed by the viscous relaxation timescale, ηa/σ [26].
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Figure 5. Relaxation of ω0 for (•) PDMS Ca step up from 0.000 24
to 0.014 and (◦) PIB Boger fluid Ca step up from 0.000 36 to 0.011.
Solid lines are the fits using viscous time constant [26].

Figure 6. Interface shape of PDMS at Ca = 0.33 with ω0 > 90◦.
Solid line fit to equation (2).

In two cases, we have observed extended regions where
the viscous bending is no longer well described by the
modulated wedge flow in equation (1). The first occurs when
we raise the Ca in the fluid beyond Ca = 0.1 [27]. (See
figure 6.) Here ω0 = 160◦ and the interface has been driven
below the bulk level. The region where modulated wedge flow
describes the interface shape has been driven out to >500 μm
from the contact line. For this case, we cannot be sure whether
this delayed onset of the modulated wedge flow arises from an
intrinsic inadequacy of the low-Ca theory of equation (1) or
from an inability of the physics at some smaller scale to relax
such that it can match to the modulated wedge flow described
by equation (1). A clearer example is seen in figure 7 where
we have shown the interface of a fluid advancing over a pre-
existing thin film. For r > 400 μm, the interface shows
viscous bending is well described by the modulated wedge
flow; but for r < 400 μm, it is not. Analysis [13] and
numerical simulations [14] show this arises because the flow
existing in the thin film takes some distance to relax before
it can match to the modulated wedge flow. The size of this
region depends on both Ca and the thickness of the pre-
existing film [14]. As the region described by the modulated
wedge becomes larger, the relation of ω0 to Ca becomes

Figure 7. Interface shape of PDMS advancing at Ca = 0.014 over
pre-existing 10 μm thick film. Solid line fit to equation (2).

Figure 8. Schematic of rheology for a shear thinning fluid. Solid line
represents the shear-rate-dependent viscosity.

better described by the 1/3 power law arising from the wedge
flow [14].

These results for lower molecular weight PDMS show
that the viscous bending in the melts of these highly flexible
polymers is well described by equation (1). In fact, the full
model in equation (2) describes all aspects of the dynamic
wetting of these fluids very well for Ca < 0.1. Dynamic
contact angles behave as expected when the modulated wedge
flow describes most of the region of the interface showing
viscous bending. We do see cases where some physics on a
smaller length scale delays the onset of the wedge flow until
larger r . To probe the impact of non-Newtonian behavior on
dynamic wetting, we now examine the wetting of two types
of fluids carefully designed to exhibit well controlled non-
Newtonian behavior.

4. Non-Newtonian fluids: shear thinning

Since fluid elements experience high-shear rates near a moving
contact line, we expect significant effects on dynamic wetting
when the viscosity of the fluid is shear-rate dependent. In this
section, we focus on the impact of shear thinning. Figure 8
illustrates how the viscosity varies with shear rate for an
idealized shear thinning fluid. The viscosity shows a zero-shear
plateau at η0 for shear rates less than a lower critical shear rate,
γ̇ L

c , and then decreases following a power law with exponent,
n−1. For anything but a superfluid, the viscosity again plateaus

5
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Figure 9. Interface shapes of (
) 0.15 wt% XG solution at
Ca = 0.0005 and (◦) 2% PEO solution at Ca = 0.0006. Dashed
line fit to static interface shape for XG data. Solid line best fits to
equation (2) for both XG and PEO data. For the XG case, the fit to
equation (2) cannot match the data at all because of the large
curvature required by Ca.

for shear rates above an upper critical shear rate, γ̇ H
c . The shear

thinning exponent n is material dependent and varies between
0 and 1, with n = 1 for a Newtonian fluid.

We use dilute aqueous solutions of a semi-flexible
polymer, xanthan gum (XG), to probe the impact of shear
thinning [28, 29]. The XG solution we will discuss here has
n = 0.4 and γ̇ L

c = 0.1 s−1. No measurable fluid memory
effects (first normal stress difference are not seen above the
low limit of the instrument N1 < 0.5 Pa) are observed for
shear rates between 10−3 and 102 s−1. Figure 9 shows a typical
interface of the XG solution. We see that viscous bending
is virtually absent and the interface is described by a static
shape. No part of the interface is described by the modulated
wedge flow using a Ca based on the zero-shear viscosity,
η0, of the solution or any other viscosity other than zero. A
mechanism (described by a model below) has dramatically
reduced the interface curvature, which implies that the viscous
component of the normal stress on the free surface, 	τ , (=total
normal stress − ρgz, where z is the vertical distance from a
given point on the interface to the bulk fluid level) is largely
removed. Figure 4(a) shows the variation of ω0 with Ca is
greatly reduced from the behavior that is observed for fluids
where modulated wedge flow dominates the viscous bending
of the interface.

Lubrication analysis may be used to obtain the flow field
and the interface shape for this type of shear thinning fluid [28].
As shown in figure 10, a region near the free surface exists
where the shear rates remain below γ̇ L

c and the fluid exhibits
Newtonian behavior. In a region extending along the solid until
the shear rate drops below γ̇ L

c , the fluid exhibits shear thinning
behavior. For the γ̇ L

c of the XG solution shown in figure 9,
we estimate this region extends to a distance ∼ 1mm, beyond
the field of view of the experiment. This analysis successfully
mimics the trends seen in our experiments. From the model,
we see that the reduction in the viscous bending arises from
the reduction of the fluid viscosity along the solid wall in the
region extending from the contact line, reducing the drag of the

Non-Newtonian region

Newtonian region

U

Figure 10. Newtonian and non-Newtonian regions for a shear
thinning fluid.

solid on the fluid. This reduction on the wedge flow reduces
both viscous bending and the variation of the dynamic contact
angle with Ca. Studies of drop spreading of shear thinning
fluids suggest similar behavior [30, 31].

Dilute polyethylene oxide (PEO) aqueous solutions also
shear thin. The 2 wt% PEO solutions we have examined
have a low critical shear rate, γ̇ L

c = 10 s−1, and a shear
thinning exponent of n ∼ 0.8 [32]. However, they also show
a large first normal stress difference, which is a manifestation
of fluid memory. Figure 9 compares the interfaces of the XG
and PEO solutions at similar Ca. Unlike XG, an extended
region of viscous bending described by modulated wedge
flow is recovered in PEO. Also, in the region where the
viscous bending is not described by modulated wedge flow, the
interface curvature of the PEO solution is enhanced (rather than
reduced, as in the XG solution) compared to a Newtonian fluid
with the same zero-shear viscosity. Thus, while the impact of
shear thinning in PEO likely reduces the drag of the solid on
the fluid in a region along the solid to distance on the order of
100 μm, we observe very different dynamic wetting behavior
than in XG. Motivated by the presence of fluid memory in the
PEO solution, we attempt to isolate the impact of fluid memory
using the well controlled fluid discussed in section 5.

5. Non-Newtonian fluids: elasticity

Fluid elasticity, or fluid memory, causes a time-dependent
relaxation of the responding viscous stress in the fluid after
adding or removing a load. Most elastic fluids have complex
relaxation spectra. In this section, we discuss a simple case,
an elastic fluid with only one relaxation mode that can be
described by the Oldroyd-B constitutive equation [33]. Two
parameters are used to characterize its rheology, viscosity and
relaxation time. Figure 11 illustrates how this fluid responds
under sinusoidal shear deformations over a wide range of
frequencies, ω. The dynamic viscosity η′ (≡G ′′/ω, where G ′′
is the viscous modulus) is a measure of energy dissipation. It is
constant for an Oldroyd-B fluid, just as for a Newtonian fluid.
However, unlike a Newtonian fluid, the elastic fluid shows a
non-zero first normal stress coefficient �1(ω) (≡2G ′/ω2 in
the linear viscoelastic limit, where G ′ is the elastic modulus)
which is a measure of energy storage. For an Oldroyd-B elastic

6
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Figure 11. Schematic of rheology for a Oldroyd-B fluid. Solid line
represents the shear-rate-independent viscosity. Dashed line
represents the first normal stress difference coefficient.

fluid, the value of �1(ω) increases as the frequency decreases
and finally forms a plateau in the low frequency (small-shear
rate) region with a value of �10. In the Oldroyd-B model, the
relaxation time of this fluid is λ = �10/2η0, where η0 is the
zero-shear rate viscosity of the fluid. We use a Weissenberg
number (Wi = λU/a) based on the capillary length to
characterize the potential strength of the impact of elasticity
on the dynamic wetting in the geometry of our experiments.

Boger fluids are well-established model elastic fluids that
were designed to exhibit rheology described by the Oldroyd-B
constitutive equation [33, 34]. With a high, constant viscosity
provided by an oligomeric, Newtonian base fluid and a slow
relaxation mode provided by a small amount of high molecular
weight polymer additive, Boger fluids can be used to isolate
elastic effects from significant shear thinning and inertial
effects [35]. Since a Boger fluid is a solution, we replace the
zero-shear rate viscosity in the calculation of relaxation time
with 	η = η0−ηs, which is the viscosity contribution from the
component of the fluid that is adding elasticity to the solution.

We have examined the dynamic wetting behavior of
several Boger fluids based on polyisobutylene (PIB) and
polystyrene (PS) [29, 36, 37]. As an example of the dynamic
wetting behavior we have observed in these fluids, we discuss
a PIB Boger fluid with λ = 5 s relaxation time. This fluid
was prepared by dissolving 0.3 wt% high molecular with PIB
(4.7 × 106 g mol−1 PIB, Scientific Polymer Products, Inc.)
into its oligomer melt (Indopol® H-100, Innovene Inc.) with
less than 5 wt% kerosene to assist the dissolution. Its wetting
behavior up to a Ca approaching air entrainment (where ω0

approaches 180◦), was examined. To isolate the impact of the
elasticity of the Oldroyd-B mode of the fluid, we compare its
dynamic wetting to that of its Newtonian base.

Figure 12(a) shows interface shapes of our Boger fluid at
increasing Ca and Wi ; figure 12(b) shows the distance from
the contact line, rc, where for r > rc the interface shape
is described by equation (2). For interfaces with ω0 < 90◦
(menisci forming above the bulk fluid level), the region where
viscous bending is described by equation (2) is delayed to
increasing distances from the contact line as Ca increases. For
smaller distances from the contact line, r < rc, the interface

Figure 12. (a) Variation of the interface shapes with Ca for PIB
Boger fluid. (♦) Ca = 0.0014, (
) Ca = 0.011, (×) Ca = 0.11,
(◦) Ca = 0.22, (��) Ca = 0.65. Solid line fits to equation (2).
(b) Variation of rc versus Ca for (◦) PIB Boger fluid and (�) PIB
base fluid.

is more curved6 than predicted by equation (2). For these low
Ca’s, Wi is quite small; yet, we see a detectable difference
in the wetting of the Boger fluid from the predicted behavior
for a Newtonian fluid. Since the perturbations from the
Newtonian interface shapes are small, we use the Newtonian
flow fields [10] to determine the largest distance near the solid
wall where the shear rate in the fluid is greater than the inverse
Oldroyd-B relaxation time of the fluid, thus characterizing the
region where non-Newtonian behavior might be occurring. For
all the cases with ω0 < 90◦, this distance is comparable to the
region where the modulated wedge fails to describe the viscous
bending, i.e., r < rc. To determine if this behavior is due to
the elasticity added by the Oldroyd-B mode, we must compare
the dynamic wetting of the Boger fluid to that of its Newtonian
oligomer base. In figures 12(b) and 13, we see that at these
low Ca’s, the base and Boger fluids have virtually identical
behavior. Thus, the differences in the dynamic wetting of the
Boger fluid from a Newtonian fluid are not arising from the
long Oldroyd-B relaxation mode added by the high molecular
weight specie. They are already present in the Newtonian base
fluid—a subject we will discuss further in section 6.

6 The interface curvature is estimated from the slope of the r–θ plot with ∼5%
accuracy.
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Figure 13. Comparison of the interface shapes for (◦) PIB Boger
fluid and PIB base (�) fluid at Ca = 0.0022.

The behavior at higher Ca and Wi where ω0 > 90◦ leads
to a similar conclusion but is more complex to observe from
the data. When the meniscus is below the bulk fluid level, the
static part of the normal stress at the interface causes a negative
curvature, while the viscous bending for the advancing menisci
contributes a positive curvature. Thus in figure 12(a), we
see an inflection point in the interface (zero slope in our r–θ

plots) which moves to small r as Ca increases. As shown in
figure 12(b), the region where the viscous bending is described
by modulated wedge flow continues to retreat to larger r .
This behavior is also present in the Newtonian base fluid. In
figure 14(a), we compare the Boger and base fluids at the
same Ca = 0.33 for a case where ω0 > 90◦. For this case
Wi of the Boger fluid is 1.2, while Wi for the base fluid
(using some very fast relaxation time in the fluid) is orders
of magnitude smaller. Again, estimating from the theory for
Newtonian flow fields, the deformation rates near the solid
wall are large enough to prevent relaxation of the segmental
and chain motions of high molecular weight polymer additive
to r = 100 μm in the Boger fluid, well within the region
directly observed in the experiment. Figure 14(b) shows the
viscous component of the normal stress at the free surface is
larger in the PIB Boger fluid than in its oligomer base fluid.
However, much of this increase comes from the fact that the
viscosity of the Boger fluid is 1.9 times that of the oligomer
base. Therefore, the velocity gradients at the interface of the
PIB Boger fluid are quite similar to those of its oligomer base
fluid. The difference we see in figure 14(b) mainly comes from
the viscous contribution of the high molecular weight additive
rather than its elastic contribution, further evidence that the
elasticity of the Oldroyd-B relaxation mode has little impact on
the interfaces. It is apparent from these results that the elastic
non-Newtonian behavior of the long relaxation modes in the
Boger fluid in the high-shear region near the solid surface is
not effective in bending the free surface and impacting dynamic
wetting.

The variation of the dynamic contact angle ω0 with Ca for
the Boger fluid and the Newtonian base is shown in figure 4(a)
for lower Ca. We see the variation of ω0 with Ca for Boger
fluid is slightly reduced compared to its Newtonian base, but
both are very close to the Ca1/3 behavior arising from the

Figure 14. Comparison of (
) PIB Boger fluid and (◦) PIB base
fluid at Ca = 0.33 with ω0 > 90◦. (a) Interface shapes with best fits
to equation (2). (b) Viscous component of the normal stress at the
free surface.

fact that modulated wedge flow occupies much of the region
where viscous bending is occurring. Differences in the slopes
of these curves arise due to different material properties such
as �1 and not from deviations from the modulated wedge flow
behavior. However, there does appear to be more deviation
for the Boger fluid data from the Ca1/3 relation than for the
Newtonian base fluid. Figure 4(b) shows the similarity of
dynamic contact angles of the Boger and Newtonian base fluids
over the entire Ca range examined. As in the examination of
the interface shapes, we again see the non-Newtonian behavior
of the long relaxation modes in the Boger fluid in the high-
shear region near the solid surface is not very effective in
impacting the dynamic contact angle. What is most striking is
the effectiveness of the shear thinning near the solid surface in
altering viscous bending and ω0 compared to relatively minor
impact of the elasticity in the Boger fluid near the solid surface
on dynamic wetting, even for an elastic fluid with seconds of
memory.

We have also compared the dynamic wetting of
this Boger fluid and its Newtonian base fluid in other
geometries, including drops spreading on horizontal surfaces
and withdrawal of a vertical surface from the fluid bath when
a thin film is entrained on the solid. While some small
differences appear between these elastic and Newtonian fluids,
they are not large.

Since non-Newtonian fluids often show an overshoot
in their response to step changes in stress, we studied the
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Table 2. ‘Newtonian’ PIB melt properties.

Fluids
θs@Pyrex
(deg, ±5◦)

η@25 ◦C
(P, ±5%)

σ

(dyn cm−1)
Mn [53]
(g mol−1)

Degree of
polymerization

L-14 5 0.56 23.4 ± 0.9 370 7
H-7 13 2.7 24.2 ± 0.8 440 8
H-35 24 51 30.5 ± 1.0 700 13
H-100a 20 110 31.5 ± 1.0 910 16
300Pb 23 308 31.7 ± 1.0 950 17
H-300c 29 833 32.7 ± 0.9 1300 23

a PIB melt used as the Boger fluid solvent, with <5 wt% kerosene in it.
b 300P is Parapol 950 sample from Exxon Chemical, others are Indopol®

samples from Innovene, Inc.
c Shows a small but detectable first normal stress difference.

relaxation of dynamic wetting for the Boger fluid after a step
change in surface velocity. For PIB Boger fluids, we observe
only a monotonic response with no overshoots in either the
contact line position or ω0 with time after the step change
in surface speed. The relaxation of the PIB Boger fluid is
correctly described by the same quasi-steady behavior as the
PDMS discussed in section 3. An example is given in figure 5
where the viscous time constant for the relaxation, ηa/σ ,
describes the contact angle relaxation of the Boger fluid. In
this example, Ca changes from 4 × 10−4 to 0.01 and Wi
changes from 1.4 × 10−3 to 0.42. Jumps to larger Ca and
Wi could not be completely quantified by our methods since
the meniscus moved from above the bulk level to below it
which requires two different optical cell geometries. However,
we have determined that no overshoot in contact line position
occurs even for transients with increases in surface speeds as
large as factors of 30, final values of Ca approaching 0.65
(close to air entrainment), and Wi reaching 2.4. At this high
a value of Wi , some fraction of the flow field is sampling the
nonlinear regime of the fluid, based on the constitutive relation
developed from rheometric measurements.

Elasticity is thought to change the threshold for a variety
of instabilities in wetting flows [38–43]. We do not observe
any instabilities on the free surface of our PIB Boger fluids,
even in transients as the surface speed is changed very
rapidly (within 1/30 s) and we reach the nonlinear regime
mentioned above. In our experiments, Re remains small at
all speeds examined and does not show the broken contact line
phenomena seen in higher Re cases for both Newtonian [44]
and non-Newtonian [38] fluids. Unlike the receding case
where the threshold for the ‘ribbing instability’ is lowered
by elasticity [39, 40], the advancing case is predicted to be
stable [45].

We have used a lubrication analysis to determine the
velocity field and interface shape for an Oldroyd-B fluid in
a small region near the contact line [46]. Our methods are
based on those used in [4, 47, 48]. We use either a pre-
existing thin film or slip on the solid surface to relieve the
contact line stress singularity. We perform a double expansion
in Ca and Wi for all the governing equations and boundary
conditions. Because we only keep the lowest order terms in
the elastic correction, the effects of elongational deformations
and nonlinear elastic effects are lost. We integrate the 3rd
order ordinary differential equation for the interface shape

that arises in the lubrication analysis so that it matches to a
static macroscopic interface shape in a two-dimensional slot
geometry. This 3rd order differential equation has a quadratic
behavior as the distance along the solid surface from the
contact line, x → ∞ (where x is the distance along the
solid surface); but the theory indicates that a region where
θ ∼ (Ca ln(x))1/3 will appear for small enough Ca (a/�1)

3/2.
This log behavior is similar to the modulated wedge behavior
of the Newtonian case in equation (1). As in previous
studies [47, 49, 50] and our experiments, our analysis shows
the impact of Oldroyd-B elasticity on the dynamic wetting
is weak at the low Wi accessible to these methods and the
precise results are significantly influenced by the flow in the
outer regions of the slot.

6. Other viscous polymer melts

In section 5, we have seen that for Ca < 0.01, the
oligomeric, Newtonian PIB base fluid shows deviations from
the predictions for a Newtonian fluid which do describe PDMS
fluids. Oligomeric PS fluids show similar deviations [51].

To investigate this further, we examined the suite of
PIB materials listed in table 2. These PIB oligomer melts
appear Newtonian in shear rheometry with only the H-300 PIB
melt showing a barely detectable first normal stress difference
at the highest-shear rates probed. Figure 15 shows three
typical examples of the deviations of the interface shapes from
equation (2) which describes the lower viscosity PDMS. As
shown in figure 16, the onset of the modulated wedge region
always increases with Ca for a given material. However,
the behavior across members of the suite of fluids is not
simple. For example, in figure 17 we see a fluid that is more
viscous, H-300, deviates less from the Newtonian result than
a less viscous fluid, H-35. Full characterization of trends in
the dynamic wetting across this suite of fluids would require
more carefully controlled fluid properties, especially molecular
weight polydispersity.

We have eliminated two possible causes for the differences
between the PDMS suite of fluids and the other Newtonian
fluids. The first is the fact that the PDMS fluids form a zero
degree static contact angle with the Pyrex solid surfaces, but
the PIB and PS fluids do not. However, when PDMS fluids
spread across a fluorinated surface where they have a static
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Figure 15. Typical interface shapes of H-35 oligomeric PIB at low
Ca. (◦) Ca = 0.0013, (
) Ca = 0.0026, (��) Ca = 0.0051. Solid
line fits to equation (2).

Figure 16. Variation of rc with Ca for all PIB melts listed in table 2.
( ) L-14, (�) H-7, (��) H-35, (�) H-100, (◦) 300P, (
) H-300.
Dashed line shows the detectable limit of 20 μm and the error bars of
all data are ±5 μm. Arrow on data for H-300 at Ca = 0.0013
indicates it is below the delectability limit.

contact angle of ∼50◦, we see no delay of the modulated
wedge region as we do in the PIB and PS fluids [23]. We
also do not see a monotonic change in the deviation for the
PIB fluids as the static contact angle increases. These results
suggest the deviations in the PS and PIB fluids do not arise
from differences in the static contact angle.

We have also shown the delay of the modulated wedge
region is not due to the interaction with the solid surface.
Figure 18 is the comparison of the interfaces at the same Ca
for the same PIB fluid but on different energy surfaces, bare
Pyrex and a methylated surface. Clearly the interface shapes
are identical. A similar result is found for a Newtonian PS
oligomer [51]. Further, there is no significant difference in
the variation of onset position of the modulated wedge region,
rc, over the entire range of Ca for the PIB fluid on Pyrex
and on the methylated surface. The origin of the delay of
the modulated wedge region is a fluid property and not due
to interactions with the solid surface.

One intriguing possibility for the origin of the delay of
the modulated wedge region is that complex non-Newtonian
behavior of these oligomeric fluids is occurring on a small

Figure 17. Comparison of interface shapes for (◦) H-300 and (�)
H-35 at Ca = 0.0051. Solid line fit to equation (2). The best fits to
each data set are indistinguishable.

Figure 18. Comparison of the interfaces for H-7 oligomeric PIB at
Ca = 0.0014 on (�) a bare Pyrex glass surface and on (◦) a
methylated surface.

length scale. As discussed earlier, such non-Newtonian
behavior is unlikely to alleviate the contact line singularity in
the inner region. However, the inverse deformation rates in the
flow field cannot rise above the very fast relaxation times in
these fluids except very close to the contact line. Therefore,
the region where the non-Newtonian behavior is occurring
must be on length scales below a micron. Thus, the fluid is
Newtonian throughout the field of view of the experiments,
in particular in the regions where the viscous bending is not
described by the modulated wedge solution. The delay of
the modulated wedge region is occurring as the influence of
the non-Newtonian behavior at the much smaller length scale
relaxes in regions where the fluid is Newtonian. As we have
seen, such a transition region also occurs in the case of PDMS
advancing over a pre-existing film.

7. Summary

We have investigated the dynamic wetting of viscous
Newtonian and non-Newtonian fluids. We have restricted the
discussion to viscous fluids to minimize the impact of the inner
scale physics (which relieves the contact line stress singularity)
on the variation of the dynamic contact angle with Ca. This
has allowed us to focus on the wedge flow that dominates
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the wetting in these cases. Many aspects of the dynamic
wetting (including steady state interface shapes, velocity fields,
advancing over dry and pre-wet surfaces, and transients) of
Newtonian PDMS fluids are well characterized by a model that
describes the wedge flow by the first order correction in Ca to
a static interface shape or by lubrication analyses of advancing
menisci over pre-existing films. Both modeling approaches
assume Newtonian behavior everywhere in the fluid. To begin
the examination of dynamic wetting of non-Newtonian fluids,
we focused on fluids with well controlled non-Newtonian
behavior. Shear thinning fluids greatly reduce the impact of
viscous flow by reducing the drag of the solid surface on the
fluid in the wedge-like region driving the dynamic wetting. In
contrast, the elasticity due to the added high molecular weight
polymer solute in Boger fluids has a much smaller impact
on dynamic wetting. As we returned to an examination of
oligomeric polymer melts which are nominally Newtonian,
we saw aspects of the dynamic wetting which suggest these
fluids may be exhibiting non-Newtonian behavior on a smaller
length scale, and this behavior may be impacting the flow and
dynamic interface shapes on a larger length scale.
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[19] Chen Q, Ramé E and Garoff S 1997 The velocity field near
moving contact lines J. Fluid Mech. 337 49–66

[20] Chen Q 1996 Experimental investigation of dynamic wetting
models: interface shapes and velocity fields near the moving
contact line PhD Thesis Carnegie Mellon University,
Pittsburgh

[21] Huh C and Scriven L E 1969 Shapes of axisymmetric fluid
interfaces of unbounded extent J. Colloid Interface Sci.
30 323–37

[22] Marsh J A, Garoff S and Dussan E B V 1993 Dynamic contact
angles and hydrodynamics near a moving contact line Phys.
Rev. Lett. 70 2778–81

[23] Willson K R 1995 The dynamic wetting of polymer melts: an
investigation of the role of material properties and the inner
scale hydrodynamics PhD Thesis Carnegie Mellon
University, Pittsburgh
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